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In numerical simulations of fluid-dynamics problems, solution-adap-
tive methods have proven ta be very powerful. The implementation of
the modified Shepard’s interpoiation 1o the structured grids used in
CFD is suggested and described in this paper, which takes advantage
of the logical grid structure. This technique, which is demonstrated to
be robust, efficient, smoather, and a maore accurate alternative to linear
interpolation, is used in the remapping step during the solution-adap-
tion procedure. Applications 10 the solutions of the incompressible
Navier Stokes agquations (both 20 and 3D) aro included. w1983
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1. REVIEW OF PREVIOUS WORK

I.1. Introeduction

In the past decade, solution-adaptive methods have
proven to be very powerful tools in problems in computa-
tional fluid dynamics where large gradients exist. Compared
to grid refincment, the moving-grid approach has been com-
monly used because of its easy implementation, especially
for 3D flows. Saltzman and Brackbill [1] addressed the
difficulties of multidimensional adaptive-grid generation
through the variational approach. Subsequently, most
methods have dealt with how to move the grid cfficiently
and how to choose the parameters Lo be specified in the
adaptive-grid generation (e.g., Nakahashi and Deiwert
[2]1). Several good reviews on adaptive-grid methods are
given by Anderson [3], Thompson [4], and Eiseman [5].

During the solution-adaption procedure, the (inter-
mediate) solutions obtained from a PDE solver (e.g., a
Navier-Stokes solver) must interact with the grid obtained
from an adaptive-grid generator. The interaction occurs
cither through grid-speed terms in the PDL solver or simply
by transferring the solution data {rom one computational
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grid to another, namely, remapping [5] (or rezoning). The
advantage of the grid-speed approach is that a better resolu-
tion can be obtained in time, particularly, for the implicit
schemes. But, since the grid-point locations are not known
a priori, the grid-speed approach suffers from the difficulty
to control coordinate singularity {5]. For example, if local
grid speeds arc too large or move too rapidly during the
solution procedure, the result could be an overlapping or
highly skewed grid. In contrast Lo the grid-speed approach,
the remapping procedurc is commonly used becausc of its
simplicity, efficiency, and numerical stability [ 5], especially
when steady-state solutions are the prime interest. It is also
more practical for inherently time-consuming, unsteady, 3D
flow calculations since the grid is adapted only occasionally
during the computation. The main purpose of this paper is
to consider how to apply the remapping step to solution-
adaptive methods.

Recently, Mastin [6] presented some interpolation
schemes to transfer solution data from one computational
grid to another. One of his suggestions is to first use a point-
search algorithm to find a grid point sufficiently close to Q,
the point lor which interpolated solution values are desired
and then to determine a cell C which contains @, using a
cell-search algorithm. Thus the value at Q can be computed
by using bilinear (2D) or trilinear (3D) interpolation since
the solution values at the vertices of the cell C are known.
But this algorithm suffers from two difficulties. First,
bilinear (2D) and trilinear (3D) interpolation cannot
always be applicd to arbitrary quadrilateral and hexahedral
cells, respectively. Although Seldner and Westermann [7]
have already given a generalization of how to apply bilinear
interpolation to urbitrary convex gquadrifateral cells, there is
no corresponding generalization of trilincar interpolation
yet (to the authors’ knowledge). Second, the cell-search
algorithm may fail to locate the point ¢ within a cell C in
general 3D curvilinear coordinates if the faces of the cell are
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not planar. This is also pointed out by Mastin himself.
Generally, this is a common case in solution-adaptive
methods. Furthermore, the interpolant obtained from
bilinear or trilinear interpolation is cnly a continuous
function across the interfaces between celis. From the
computational point of view, not only a continuous
function, but rather a continuous, smooth function across
the interfaces between cells would be preferred.

Because of the importance of the remapping step in solu-
tion-adaptive methods, an interpolation scheme is needed
which is robust, highly accurate (at least a continuous,
smooth function across the interfaces between cells),
efficient {or at a reasonable computational cost), and easy
to implement. Among different interpolation methods, the
modified Shepard’s interpolation [8-13] is an excellent
candidate for solution-adaptive methods for the following
reasons. First, it is designed for scattered data (it will be
shown how to customize it to a well-structured grid later} so
it is robust even when the faces of the cell are not planar.
Second. the modified Shepard’s method used in this paper
has quadratic precision [127], which is more accurate than
the bilinear and trilinear interpolation for 2D and 3D,
respectively. It also satisfies the requirement that the
resulting interpolant is a continuously differentiable smooth
function across the interfaces between cells. Next, it is a
local interpolation method which makes it efficient, with the
level depending on how many points are involved in the
calculation. Last, it is easy to implement for both 2D
and 3D.

In the next section, the original Shepard’s method and
some of its properties will be described. Following this, the
modified Shepard’s method as given by Franke and Nielson
[12] is presented.

1.2, Shepard’s Method

Shepard [8] developed a technique for interpolating 2D
scattered data and applied it to the fitting of geographic and
demographic data. Most of the basic properties of Shepard's
method can be understood readily through discussion of the
2D case. Also there is a straightforward extension from 2D
to 3D for this particular method. Thus, only 2D interpola-
tion is given in this section.

Let / be a function with values f, at nodes (x,, y,) for
k=1, .., N, and define

Flxy)= ¥ Wk(x,y)Qk(x,y)/ T Wexy). (LD)

k=1 k=1

For appropriate choices of W (x, y) and Q,(x, y) that
follow, I is a bivariate interpolant with the property that
Filx, vi))=fe. k= N W, =1/d% and Q(x, y}= 1.
then Eq. (1.1) can be written as

Fies {x, ¥)= (x4, y;) for some &,
Flx,y)= ()Efk/dif)/(i l/dj;),
k=1 k=1

where u>0, and d = [(x —x.)* + (y— y:)*]'7 Tt is easy
to see from Egq.(1.2) that closer points make a larger
contribution to the interpolant F. Note that Eq. (1.2) has
exactly the same form as that found in Shepard [8].

Here, some of the properties of Shepard’s method will be
described briefly. More details may be found from Ref.
[9-11]. Equation (1.2} may be rewritten in cardinal form as

(1.2)

otherwise,

N
Fx,p)= 3 fiWilx, »),

{1.3)
k=1
where
O (x, y)=(x;, y;) for some j,
W, ( = 1.
e y) (1/d% /( b3 l/d“) otherwise. (14)
J=1
Muitiplying Eq. {1.4) by J_ (dY, W, (x, ») becomes
N
Wiix, »)=1] d“/z l_[ ax. (1.5)

i=1 i=1 j=1
FEk 7

W.(x,») is a continuous function in the domain. This
follows from the fact that the denominator of Eq. (1.5) never
vanishes if the (x,, »,) are distinct. In fact, if y > 1, then W,
is a C* function; thus all high-order derivatives of the inter-
polant F are continuous for all (x, y).

It is clear that except for the points {xg, y.), the inter-
polant F constructed by Shepard’s method is dnalyvric
everywhere in the domain. Its shape depends on the values
of . For 0 < g <1, Shepard’s interpolant is not a smooth
function, for it has cusps or corners at the point (x;, y, ). For
i > 1, the partial derivatives of F at each point (x,, y,} are
zero, which produces a flat spot at the point (x,, y.).
Shepard [8] suggested p=2. There are other interesting
properties of Shepard’s formula, a few of which are listed
below:

a. It satisfies the maximum principle, i.e.,

min f, < Flx, y)< max fk

1€h€EN ks N

(1.6)

b. Fis also a constant function if the values of f are
constant; i.e, il f,=C, k=1, ., N, then F=C.

c. Fisaconvex combmatlon of f.; this is based on the
fact that ¥¥_, W,(x, y)=1and W,(x, y) =0 for all k.
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FIG. 2. Move from P to R.

5. Define
Qulx, Yy =Cilx—xp ) + Ealx —x )y — w4
+Ca( ¥ — i+ Gralx — x,)

+ sy — )+ S
and compute

Z Wx, y)

k=1

Fx, p)= Z Wx,y) Qulx,y

k=1

ik

As pointed out in step 3 above, an efficient point-search
algorithm is required for the proposed implementation.
Recently, Mastin {6] presented interpolation schemes for
solution-adaptive methods and related problems. He gave
two search algorithms in his work, namely, the poins-search
algorithm and the cell-search algorithm, the former of
which has been adopted in this study. To apply the point-
search algorithm to find a grid point sufficiently close to Q,
the point for which interpolated solution values are desired,
assume P is a starting point (see Fig, 2). First, both the dis-
tance from P to Q and the distance from Q to R, where R
is a neighbor of P, are computed and compared with cach
other. P is replaced by R whenever R is found to be closer
to @ than P is. Then, the procedure is repeated until P is
closer to @ than any of its four {2D) or six {3D) neighbors

are.
3. ADAPTIVE-GRID SCHEME

Grid-generation codes based on the elliptic grid-genera-
tion equations are commonly used in computational fluid
dynamics. Since the control-function approach is also based
on these equations, it is natural to consider it among dif-
ferent adaption strategies [ 15, 167, Additionally, it is easy
to add the control adaptive functions {used in the control-
function approach) to those already evaluated from the
elliptic grid-generation codes in which the geometry is
considered [15].
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In order to improve the accuracy of the solutions, some
sort of orthogonality control has to be added to the grid-
generation equations used in the control-function approach.
Here, the resulting Euler equations obtained by minimizing
the integral of the orthogonality control, as proposed by
Saltzman and Brackbill [1], are incorporated into the
equations used in the control-function approach to improve
the orthogonality of the interior grid [17, 18]. Also, the
orthogonality of the grid at the boundary is enhanced by
use of Neumann boundary conditions to solve the grid-
generation equations,

4. NUMERICAL RESULTS

Driven-cavity flow has become a standard test case for
the incompressible Navier—Stokes equations in the past two
decades. For example, Ghia et a/. [19] used a multi-grid
method coupled with a strongly implicit procedure (SIP) to
solve 21> driven-cavity flow up to Re=10,000 on a
257 x 257 grid. Schreiber and Keller [20] also solved the
same problem on a 180 x 180 grid using Newton iteration
coupled with a continuation method. Both used a uniform
grid.

In the present work, the solution-adaptive method with
modified Shepard’s interpolation is used to obtain a
solution yielding comparable results while using fewer grid
points and computer resources. In this section, the problem
formulation and solution algorithm for the 2D case are
described briefly. Results obtained from 2D driven-cavity
flow with Re =5000 on an 81 x 81 grid are shown. Finally,
some results for 3D driven-cavity flow are given to
demonstrate the ease with which the modified Shepard’s
interpolation can be applied to 3D flows.

4.1. Results of 2D Driven-Cavity Flow
with Re = 5000
4.1.1. Problem Formulation and Solution Algorithm

The Navier-Stokes equations in terms of curvilinear
coordinates for 2D flow in a square cavity (see Fig. 3) can
be written as

w’+y.,(u~x,)—x,,(v—y,)w:
J
. —yg(uwx,); xi(”_}")w,,
1
~Re Jz(“wcf 2fe,,

+ yw,, + ow, +10,)

F (Ofl,[l;c - 2n8'j’~f?? + )nwbrm + O'l,[l,, + Tlﬁ{) =
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FIG. 3. 2D driven cavity.
where u=,, v=—y ., and w=v,—u . Here, (x, y) and

(£, 1) are coordinates of the physical and logical spaces,
respectively. J is the Jacobian of the transformation from
physical space to logical space; x, and y, are the grid speed
terms; X, Ye, X,, ¥y, @, B, ¥, 6, and t are metric terms. The
boundary conditions are given by

u=v=0, when x=0orl, .
u=v=0, when y=0, (4.3)
u=1v=0, when y=1.

Equations (4.1) and (4.2) were discretized by applying a
three-point central difference to spatial derivatives in @ and
i and a first-order backward difference to time derivatives
in w. In order to ensure second-order accuracy of the con-
verged solutions, vorticity boundary conditions at the wall
were evaluated in a way similar to that of Ghia er al. [19].
The resulting nonlinear system of algebraic equations was
solved by the modified strongly implicit procedure (MSI)
which originated from Stone [21] and was subsequently
extended to a nine-point finite-difference scheme by
Schneider and Zedan [22]. Since steady-state solutions
are of principal interest, adaption has to be done only
occasionally during the solution procedure. Here the
solution-adaptive method coupled with a continuation
method is used.
The solution algorithm [ 17, 18] is outlined as follows:

1. Specily the initial value of Re. In order for solutions
to converge faster, the calculation usually starts from a
low Re.

2. Solve Egs. (4.1)-(4.3) on a grid system using one-by-
one iteration, te., one¢ iteration for the stream-function
equation followed by another iteration for the vorticity
equation.

3. Calculate the weight functions for the adaptive-grid
scheme [17, 18] based on the convergent (or reasonable
intermediate) solutions of step 2.

4. Generate a new grid by sclving the grid equations.

5. Map values of w, ¥, u, and v from the old grid to the
new grid.

6. Increase the value of Re.

7. Repeat steps 2 through 6 until the solution converges
for the desired Re.

Because one-by-one iteration is used in this study, for 2D
driven-cavity flow, the boundary values of vorticity at the
walls have to be damped as:

(wp)+! = Mwp) ! + (1 - A)wp) (4.4)
with A=0.15 [23]. Note also that the initial grid used can
be either a uniform grid or a nonuniform grid based on pre-
vious knowledge of the flow. Also, if desired, the grid can be
adapted further after the final solution is obtained; then Egs.
(4.1)-(4.3) are solved once more. Finally, singular value
decomposition was used to solve the weighted least-square
problem [247 of the modified Shepard’s interpolation used
in step 5.

4.1.2. Convergence Criteria

Since the principal interest here is the steady-state solu-
tion, the grid-speed terms in Eq. (4.1) are set to zero for the
reason already mentioned in the Introduction. The solution
procedure starts from Re =400 on an 81 x 81 uniform grid
and then Re is increased to 1000, 3200, and 5000. (Solution
data for the intermediate solutions during the adaptions is
available in the literature for comparison (Ghia er al
[197).) The convergence criteria for both the Navier—
Stokes solver and the grid-generation sclver is defined as

TOL — g @25 = (05

';'j !((Ps)ij+l|max

<, (4.5)

where k is the iteration number; @, can be w and ¥ for the
Navier-Stokes solver and x or y for the prid-generation
solver. Here ¢ is set to 5 x 10 ~° both for the grid-generation
solver during the adaption stage and for the intermediate
solutions of the Navier—Stokes solver. The value of ¢ for the
final converged solutions is 10 > for both the grid-genera-
tion and Navier-Stokes solvers. In addition, root-mean-
square residuals {RMSR), as suggested by Benjamin and
Denny [23], are used to monitor errors during iteration in
the Navier-Stokes solver. RMSR isset to 5 x 10 *and 10
for the intermediate and the final solutions, respectively.
Note that these values are obtained after normalizing the
Navier—Stokes equations.

4.1.3. Numerical Accuracy

In order to ensure that the numerical accuracy of the new
interpolation method described in Section 2 is at least one
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TABLE1

Errors Due to Two Mappings

ISP, ISP, w W u U
Generalized bilinear
interpolation 6.7045E — 1 1.0624E —4 2.3551E—1(1.0146E - 2) 2.1000E — 1 (2.4876E—13)
Proposed modified 3 3 34077E —2 LII93E—6 1.2346E — 2 (1.1880E — 4) 7.2399E — 5 (1.0467E —4)
Shepard’s 3 5 21219E—1 9.6497E—6 1.2353E — 2 (8.2450E —4) 78887E —4 (1.1746E — 4)
interpolation 5 3 1.1072E — | 3.7471E — 6 1.2348E — 2 (2.8248E — 4) 3.0027E —4 (3.2859E — 4)
5 5 1.7010E — 1 52584E—6 1.2348E — 2 (4.9486E — 4) 3.6264E — 4 (6.5553E— 4)

“ Data in parentheses are obtained from the strearn function,

order higher than the popular generalized bilinear inter-
polation, the following test was performed. The solutions
based on the grid from the third adaption were used to
generate a new grid and then mapped onto this new grid.
(Similar results for other adaption stages are observed.)
Since there are no analytic sclutions available for com-
parison, the data on the new grid was then remapped onto
the previous grid and the results compared with the original
data from this grid. The root-mean-square norm was used
to caiculate the error; that is,

3. {originaldata-data obtained after two mappings)*7'/?
number of grid points '

The results of Table I confirm that the medified Shepard’s
interpolation is in general (except for some values of
the vorticity) at least one order of accuracy higher than
the generalized bilinear interpolation. The results for
ISP, =ISP, =3 are the best. The possible explanation is
that the stencil of the finite-difference method used in this
study is a nine-point “star” (results from cross-derivative
terms) which has the same structure as the proposed
modified Shepard’s interpelation with ISP =ISP, =3,
Note that the error in ¥ is insensitive to the different values
of ISP, and ISP, used. Here the largest contribution to the
errors is from the two upper corners and this dominates the
calculation of the root-mean-square norm.

The errors in stream function are smail for both inter-
polation schemes. This is due to the fact that the stream-
function profile is smooth and can be fit very well by either
method. The results of Table I also show that the values of
u and v calculated from the stream function are better than
or comparable to those of the modified Shepard’s interpola-
tion. Thus, this method of calculation for x and v is adopted
in this study.

Some results of driven-cavity flow for high Re flow have
been shown; e.g., Benjamin and Denny [23], Ghia et al.
[19], and Schreiber and Keller [20]. From among these,
the results of Ghia er @/, were selected in this study for com-

parison since detailed information is avaiiable. Figures 46
show that good agreement between the calculations of Ghia
et al. and the present method is obtained. (Except for those
used in the grid plot, all the data used in the figures have
been mapped onto the uniform grid by the modified
Shepard’s interpolation.) Note that most of the results in the
literature do not show the results of vorticity along the
moving wall. Numericai experiments show that it is
the most sensitive part of the calculation. The results of
Re=>5000 on an 8t x 81 grid in the present calculations
match those of Ghia er al almost exactly. Furthermore
Figs. 7a and b demonstrate the resemblance between the
grid and the corresponding equi-vorticity hnes not only for
the main flow pattern, but also for the sub-structures of the
two lower and upper left corners.
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4.1.4. CPU Requirements

The calculation was performed on a CRAY-XMP/18§,
using the CFT77 compiler on a single processor. The CPU
time for Re = 5000 on an 81 x 81 grid {calculation started
from a uniform grid for Re =400 to the final converged
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FIG. 6. Vorticity along the moving wall for the final converged
solution of Re = 5000.
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(a) Final grid. (b) Equi-vorticity line for the {inal converged

solution for Re=15000) is about 374s. About 37% of
the overall CPU time was spent on the adaptive-grid
generation.

4,2. Results of 3D Driven-Cavity Flow

In order to demonstrate the ease with which the modified
Shepard’s interpolation and the solution algorithm similar
to that presented in Section 4.1 can be applied to 3D flows,
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FIG. 8. 3D driven cavity.

some results for 3D driven-cavity flow are presented in this
section (See Fig. 8).

Instead of using the stream-function/vorticity formula-
tion, the vorticity/velocity formulation in 3D non-
orthogonal coordinates [17, 18] is used. In other words,
three velocity Poisson equations and three vorticity equa-
tions are solved by one-by-one iteration. As in 21D, a three-
point central difference is applied to spatial derivatives for
all equations and a first-order backward difference is
applied to time derivatives in the vorticity equations. Again
a false transient method [25] is used to improve the con-
vergence of the solutions. The resulting nonlinear system of
algebraic equations is solved by the MSI procedure which is
designed for the seven-point stencil [26].

Although 3D driven-cavity flow has become an active
subject in incompressible-flow calculation in the last decade
[27-307, there are no resuits which are based on a very fine
grid calculation available. In order to compare with the
results obtained from the solution-adaptive method on a
21 x21x21 grid, a solution is also obtained for a
41 x 41 x41 stretched grid with different stretching
parameters, The stretching function [31] is

(B+ 1B+ 1)(f—1})2 -1 —D=1_ g4y
21+ ((B+ DA — 12 - vi-n—13

X&) =
{4.6)

with i=1, 2, 3; x, are the physical coordinates and N’
are the grid numbers along the &'-coordinates. § is the
stretching parameter whose value has been chosen as oo,
1.195, and 1.118 in this study. Note that § = co corresponds
to a uniform grid and the smallest step sizes near the wall
are 1.1403x 1077 and 0.8610x 1072 for f#=1.195 and
1.118, respectively. Both Re =100 and 400 are performed
but only results of Re = 400 are presented here.

Results of Re = 100, obtained from the solution-adaptive
method on a 21 x 21 x 21 grid, agree very well with those of
the stretched grids on a 41 x 41 x 41 grid basis, This is not
surprising; since the flow field of Re = 100 is rather smooth,
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FIG. 9. The vanation of # component of velocity at Re =400, y = 0.5
and z = 0.5 as a function of x.

Ed

even the calculation on a 21 x 21 x 21 grid can produce
reasonable solutions. But this is not the case for Re = 400.
Figures 9-10 show the variations of the w and v velocity
components in the center plane of the cubic cavity. For a
41 x 41 x 41 grid, the difference between the solutions
obtained from the uniform grid (f= o) and those from
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FIG. 10. The variation of » component of velocity at Re =400, x=0.5,
and z=0.5 as a function of y.
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stretched grids (f=1.195 and 1.118) are quite large. This is
due to the fact that the step size near the wall for the uniform
grid is still too coarse for Re = 400. But, as long as the grid
is refined near the wall, the solutions start to collapse
together as can be seen from the § = 1,195 and 1.118 calcuta-
tion. Thus, the solutions obtained on a 41 x 41 x41 grid
with f=1.118 are used to compare with those from
the solution-adaptive method on a 21x21x21 grid.
Figures 9-10 show that good agreement is obtained. Note
that the results of the solution-adaptive method have been
mapped onto a uniform grid using the modified Shepard’s
interpolation,

Due to the computational cost, all the parameters (e.g.,
the relaxation parameter used in the MSI method) used in
this study are not optimal. Thus, it is difficult to give a fair
comparison in order to comment on the efficiency of the
method for the cases presented in this section. However,
some idea of the relative CPU time spent on the calculation
with and without the adaptive grid (with the same quality of
solutions) can be obtained from the numerical experiments
completed thus far. Roughly speaking, the CPU time
needed for the solution-adaptive method on a 21 x21 x 21
grid is at least 10 times smaller than that required for the
stretched grids for Re = 400. '

5. CONCLUSIONS

A new implementation of a modified Shepard’s interpola-
tion has been presented for the structured grids of CFD;
particularly its use in the remapping step of a solution-adap-
tive method has been demonstrated for both 2D and 3D
incompressible driven-cavity flows. With this new exten-
sion, the method can now be applied not only to scattered
data, but also to structured adaptive-grid methods, com-
posite-grid methods, Euler-Lagrangian methods, moving-
boundary problems, multi-level multigrid problems, etc.
Also, the simplified version provides a simpler way to deter-
mine which neighboring points are to be included in the
local least-square quadratic fit when used for locally rec-
tangular grids; the search method needed in the original
modified Shepard’s interpolation for scattered data is poten-
tially very time consuming. Results show that the proposed
modified Shepard’s interpolation has high accuracy and is
easy to implement for both 2D and 3D. The most important
advantage of the new method, however, is robustness. The
poputlar trilinear interpolation can fail during a search in a
3D calculation as pointed out in Section 1.1; in 2D, this is
not a problem. For 3D adaptive methods using remapping,
this new method will not fail.
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